Exercice 1

Huit sprinters effectuent deux 100 m. Leurs temps sont donnés dans le tableau suivant :

	Sprinter A	Sprinter B	Sprinter C	Sprinter D	Sprinter E	Sprinter F	Sprinter G	Sprinter H
Sprint 1	10"14	10"17	9"94	10"05	10"25	10"09	9"98	10"32
Sprint 2	10"41	9"97	9"96	10"12	10"19	10"24	10"12	10"17

Soit $(x_i)_{1 \le i \le 8}$ les temps respectifs des sprinters A, B, \ldots, H au sprint 1 et $(y_i)_{1 \le i \le 8}$ les temps respectifs des sprinters A, B, \ldots, H au sprint 2.

- 1. Calculer les moyennes \overline{x} et \overline{y} des séries $(x_i)_{1 \le i \le 8}$ et $(y_i)_{1 \le i \le 8}$.
- 2. Calculer les écarts-types s_x et s_y des séries $(x_i)_{1 \le i \le 8}$ et $(y_i)_{1 \le i \le 8}$
- 3. Lequel des deux sprints a été le plus homogène ?

Exercice 2

Soit $N \in \mathbb{N}^*$.

Soit $(x_i)_{1 \le i \le N}$ une famille de réels **ordonnés dans l'ordre croissant** de médiane m_e et de quartiles Q_1 et Q_3 .

Soient $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$. Soit $(y_i)_{1 \le i \le N}$ la famille de réels définis par : $y_i = ax_i + b$ pour tout $i \in [1; N]$.

Soit Q l'interquartile de $(x_i)_{1 \le i \le N}$ et Q' l'interquartile de $(x_i)_{1 \le i \le N}$.

Démontrer que : Q' = |a|Q.

Exercice 3

Soit $(x_i, n_i)_{1 \le i \le p}$ une série statistique de moyenne \bar{x} et de variance V_x .

On note $N = \sum_{i=1}^{p} n_i$ (effectif total) et, pour tout $i \in [1; p]$: $f_i = \frac{n_i}{N}$ (fréquence de x_i)

Soit g la fonction définie pour tout $t \in \mathbb{R}$ par : $g(t) = \sum_{i=1}^{p} f_i (x_i - t)^2$.

- 1. Calculer la dérivée de g.
- 2. En déduire les variations de g.
- 3. En déduire que la fonction g admet un minimum en $t = \overline{x}$. Que vaut ce minimum?

Exercice 4

- Calculer, pour chaque mois de l'année, le jour médian ainsi que les jours qui correspondent au premier quartile et au troisième quartile.
- 2. Même question pour une année entière de 365 jours.

Exercice 5

Le tableau suivant donne les effectifs des notes obtenues dans une classe en Maths et en Physique :

Notes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Maths	0	0	0	0	1	0	1	1	3	4	4	1	3	2	2	1	1	0	0	0	0
Physique	0	1	0	0	2	0	1	2	1	1	4	2	2	0	3	2	1	0	1	0	1

Le but de l'exercice est de comparer la dispersion des notes en Maths et en Physique.

- 1. Utilisation des quartiles
 - a) Calculer médiane m_e et quartiles Q_1 et Q_3 en Maths
 - b) Calculer médiane m_e ' et quartiles Q_1 ' et Q_3 ' en Physique
 - c) Représenter les diagrammes en boîte des notes en Maths et en Physique. Interpréter.
- 2. Utilisation des écarts-types
 - a) Calculer la moyenne m des notes en Maths et la moyenne des notes m' en Physique. Interpréter.
 - b) Calculer l'écart-type *s* des notes en Maths et l'écart-type *s'* des notes en Physiques. Interpréter. (On considérera que les notes en Maths et les notes en Physique sont des grandeurs comparables et qu'il n'y a pas lieu de relativiser les écarts-types en utilisant des coefficients de variations)

Exercice 6

Quarante candidats passent un examen (noté de 0 à 20). Leur moyenne est de 9,5 et l'écart-type est égal à 2.

On veut effectuer une péréquation affine afin d'obtenir une moyenne de 10 et un écart-type de 3.

Notons $(x_i)_{1 \le i \le 40}$ les notes initiales et $(y_i)_{1 \le i \le 40}$ les notes obtenues après changement affine.

On a donc:

$$\overline{x} = 9$$
; $s_x = 2$. On pose : $y_i = ax_i + b$ où a (avec $a > 0$) et b sont à déterminer afin d'avoir $\overline{y} = 10$; $s_y = 3$.

- 1. Exprimer \overline{y} en fonction de a, b et \overline{x} .
- 2. Exprimer s_y en fonction de a et s_x .
- 3. En déduire les valeurs de a et b. Quelle est la nouvelle note d'un candidat ayant initialement 5,6 ? (On arrondira à 10^{-1})
- 4. Quelle doit être les valeurs extrêmes des x_i afin que cette péréquation soit réalisable ? (On arrondira à 10^{-1})

Exercice 7 Lorsque les statistiques se contredisent

Le tableau suivant donne les temps de cinq sportifs qui ont couru un 1500m et un 5000m.

	Coureur 1	Coureur 2	Coureur 3	Coureur 4	Coureur 5
1500 m	3'58"17	4'05"48	4'12"97	4'08"29	4'00"12
5000 m	14'58"12	14'47"08	15'37"85	13'57"70	14'48"34

On veut déterminer quelle est la course la plus homogène.

- 1. Utilisation des coefficients de variation
 - a) Calculer le temps moyen m, l'écart-type s puis le coefficient de variation $C_v = \frac{s}{m}$ pour le 1500 m. (On pourra convertir tous les temps en secondes)
 - b) Calculer le temps moyen m', l'écart-type s' puis le coefficient de variation $C_{v'} = \frac{s'}{m'}$ pour le 5000 m.

- c) Conclure.
- 2. Utilisation de l'interquartile relatif
 - a) Déterminer la médiane m_e et les quartiles Q_1 et Q_3 pour le 1500 m.

En déduire l'interquartile relatif $\frac{Q_3 - Q_1}{m_e}$.

b) Déterminer la médiane m_e ' et les quartiles Q_1 ' et Q_3 ' pour le 5000 m.

En déduire l'interquartile relatif $\frac{Q_3'-Q_1'}{m_e'}$.

- c) Conclure.
- 3. Donner une explication à la contradiction entre 1.c) et 2.c).

Exercice 8

Démontrer que :

$$\sum_{i=1}^{n} (x_i - \overline{x}) = 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - x_j) = 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - x_j)^2 = 2n^2 V(x)$$